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This paper describes a numerical method for the solution of plasma fluid equations
on block-structured, locally refined grids. The plasmas under consideration are typical
of those used for the processing of semiconductors. The governing equations consist
of a drift–diffusion model of the electrons, together with an energy equation, coupled
via Poisson’s equation to a system of Euler equations for each ion species augmented
with electric field, collisional, and source/sink terms. A discretization previously
developed for a uniform spatial grid is generalized to enable local grid refinement.
This extension involves the time integration of the discrete system on a hierarchy of
levels, each of which represents a degree of refinement, together with synchronization
steps to ensure consistency across levels. This approach represents an advancement
of methodologies developed for neutral flows using block-structured adaptive mesh
refinement (AMR) to include the significant additional effect of the electrostatic
forces that couple the ion and electron fluid components. Numerical results that
assess the accuracy and efficiency of the method and illustrate the importance of
using adequate resolution are also presented.

1. INTRODUCTION

Many of the process steps performed in the manufacture of very large scale integrated
(VLSI) circuits involve plasmas [18, 19]. Inductively coupled plasma (ICP) reactors repre-
sent one type of processing tool that utilizes high-density, low-pressure plasmas to satisfy
the demanding process criteria resulting from the desire to create increasingly smaller de-
vice features on large wafers. Computational models of ICP reactors can help equipment
manufacturers and process engineers understand the complex relationships among reactor

1 This work was supported by the Applied Mathematical Sciences Program of the Office of Mathematics,
Information and Computational Sciences, of the U.S. Department of Energy under Contract DE-AC03-76SF00098
with Lawrence Berkeley National Laboratory and by Lawrence Livermore National Laboratory under Contract
W-7405-Eng-48.
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and plasma parameters (e.g., reactor geometry, radiofrequency (RF) power, gas pressure,
gas composition, electrode bias, densities, velocities) and process performance (e.g., etch
rate, anisotropy, uniformity, selectivity, damage).

A number of simulators have been developed to computationally model process plasmas.
The Hybrid Plasma Equipment Model (HPEM) [30] at the University of Illinois consists of
many interacting physics modules (e.g., electromagnetics, chemistry, fluids, Monte Carlo
collisions) and has been used extensively [12, 13, 17, 23, 24, 28, 29]. The INDUCT code [26,
27] developed at Lawrence Livermore National Laboratory implements a two-dimensional,
axisymmetric plasma fluid model with a self-consistent treatment of the inductive fields
generated by the RF coils. INDUCT includes neutral flow, multiple ion species, and vari-
able ion temperature. It has been benchmarked against experiment [4, 31] and has been
used extensively within the semiconductor industry. Work at the University of California
at Berkeley has extended the code to include complex chemistry, and the effect of these re-
actions has been investigated with INDUCT [5]. The commercial package CFD-PLASMA
(ICP), utilizing unstructured grids, has been developed by CFD Corporation for ICP simu-
lations [33].

Among the primary difficulties encountered in the development of computational models
of plasma processes is the need to address problems associated with a wide range of temporal
and spatial scales. The high-density, low-pressure plasmas employed in ICP reactors are
particularly challenging in this regard. Here, the difference between the dielectric relaxation
time of the plasma and the reactor transit time for an ion can be many orders of magnitude.
Moreover, due to the small Debye length of such plasmas, the sheath and presheath regions
over which much of the potential drop occurs can be three or four orders of magnitude smaller
than the reactor dimensions. Numerical methods must therefore accommodate large scale
variations. For example, all of the plasma simulators listed above use some form of “sheath
model” to handle the rapid variation of the underresolved state variables near the reactor
boundary.

One way to handle multiple scales in a numerical model is through the use of adaptive
mesh refinement (AMR). AMR algorithms permit the underlying computational mesh to be
modified in space and time to follow changing solution features. To date, the application of
AMR techniques to plasma simulation has been mainly limited to fusion plasmas (e.g., [16]
and references therein), and magnetohydrodynamics [25]. Relatively little attention has been
given to the use of AMR in the simulation of high-density, low-pressure process plasmas.
In [9], we described and analyzed a numerical algorithm for the solution of a system of
plasma fluid equations on a uniform spatial grid. In the present companion paper, we begin
an investigation of AMR for high-density, low-pressure plasma simulation by generalizing
this algorithm to enable the solution of the same system of plasma fluid equations on locally
refined grids. We focus our attention on grid structures with multiple levels of resolution
that are prescribeda priori, which is the first step toward a fully adaptive algorithm.

The approach we have taken in this work utilizes and extends a number of ideas that
have been developed for the application of AMR in other contexts. One of the first block-
structured AMR algorithms was introduced in [3] for hyperbolic conservation laws using
finite difference methods on a hierarchy of regular Cartesian grids. Early applications in-
cluded problems arising in gas dynamics and shock physics [2, 11]. In this approach, each
level of the grid hierarchy corresponds to a degree of spatial refinement, where the location
and topology of the grids is determined by Richardson extrapolation estimates of the trun-
cation error combined with cell tagging/clustering algorithms. The hyperbolic system is
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integrated on each refinement level separately using a time step appropriate to the CFL sta-
bility requirement of the grid on that particular level. Communication among levels occurs
through the use of temporally and spatially interpolated coarse grid data to define boundary
conditions for the integrations on finer levels, as well as so-called “refluxing” operations
performed to restore flux continuity and local conservation at coarse–fine boundaries.

The generalization of AMR for systems that are not purely hyperbolic, such as the
plasma fluid model we consider here, presents a number of additional challenges. Elliptic,
parabolic, and mixed systems lack the real characteristic structure and transit time iso-
lation that make hyperbolic AMR straightforward in comparison. Although the specific
algorithms are problem-dependent, some general strategies have been developed and ap-
plied to problems in incompressible flow [1], combustion [22], and radiation transport [14].
A common theme is the continued use of nested levelwise integrations as in the purely
hyperbolic case, with the addition of “composite synchronization” steps to restore global
constraints (e.g., incompressibility or charge conservation) as well as any compatibility
conditions at the interface between coarse and fine grids that may have been violated during
the level integrations. These synchronization steps typically require the solution of linear
systems on a portion or all of the grid hierarchy. The fact that such linear systems must be
solved on a hierarchy of successively refined grids makes multigrid-based multilevel solu-
tion algorithms a natural choice. In fact, the availability and high efficiency of multigrid
algorithms on Cartesian grids is one of the primary motivations for using a block-structured
AMR approach. In addition to the vast literature on multigrid methods, a good overview of
multilevel adaptive methods can be found in [21]. The particular approach incorporated in
the present work was motivated by the ideas presented in [20].

In Section 2, we present the physical model and the system of equations to be solved. The
plasma is regarded as a fluid consisting of charged components, ions and electrons, coupled
by Poisson’s equation. The motion of the electrons is described by a drift–diffusion model
including temperature, while each ion species is modeled by a system of Euler equations
augmented with electrostatic force, collisional, and source/sink terms. The discretization of
the system described in [9] on a uniform spatial grid is summarized in Section 3. In Section 4,
we extend the single grid algorithm to the case of block-structured locally refined grids.
Beginning with a rectangular uniform grid, subregions are successively refined to create a
hierarchy of refinement levels, each of which is a union of non-overlapping rectangles. The
time evolution of the fluid systems is accomplished through the coordinated advancement
of individual refinement levels, using the single grid algorithm of Section 3, together with
composite synchronization steps to enforce charge conservation and continuity of particle
fluxes and electrostatic field across levels. In Section 5, numerical results illustrating the
accuracy and efficiency of the method are presented. The method is then applied to two
problems of practical interest, both of which suggest the need for adequate resolution in
simulations.

2. THE PLASMA MODEL

We consider the plasma fluid model described in [9] consisting of the electron equations

∂ne

∂t
+∇ · (neue) =

∑
j

Rej, (2.1)

neue = neµ∇φ − η∇(nekTe), (2.2)
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the ion equations, for each speciesi ,
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Ri j , (2.4)
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Ei = kTi

γi − 1
, (2.7)

and Poisson’s equation

ε0∇ · E =
∑

i

qi ni − qene, E = −∇φ (2.8)

with the variables defined in Table 2.1. In deriving the electron equations (2.1)–(2.3) from
moments of the Boltzmann equation, we have neglected electron inertia in replacing the
electron momentum moment equation with the drift–diffusion force balance equation (2.2),
and we have replaced the electron total energy moment equation with the internal energy
equation (2.3). The electron transport coefficients are given by

νen ≡
∑

j

νej, (2.9)

µ ≡ e/meνen, (2.10)

η ≡ 1/meνen. (2.11)

Boundary conditions for the electron continuity equation (2.1) are derived from the
approximation

neue ≈ 0b ≡ new̄e(kTe, φ) (2.12)

for the total electron boundary flux, where ¯we is the average velocity of electrons reaching
the boundary given by

w̄e(kTe, φ) ≡ v̄(kTe)

4
exp

(
−e|φb − φ|

kTe

)
(2.13)
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TABLE 2.1

Variables Used in the Plasma Fluid Model

nj Number density
uj Velocity
φ Potential
E Electric field
Tj Temperature
E j Internal energy
γ j Ratio of specific heats
Pind Input power density
µ, η Transport coefficients
mj Mass
Ri j Number density gain/loss rates from ionization, attachment, etc.
Si j Number density gain/loss rates from inelastic collisions
εej Energy transferred in inelastic collisions
νi j Elastic collision frequencies
qj Charge
e Elementary charge
ε0 Permittivity of free space
k Boltzmann’s constant

andv̄(kTe)=
√

8kTe/πme is the average speed for a Maxwellian distribution. Using (2.12),
one obtains boundary conditions for the electron temperature equation (2.3) from

Qb ≡ 5

2
nekTeue− 5

2

nekTe

meνen
∇kTe = 2kTe0b, (2.14)

whereQb is the total energy boundary flux.
Hypersonic outflow boundary conditions are assumed for the ion equations (2.4)–(2.6)

corresponding to positively charged speciesi (qi > 0). As explained in [9], this choice is
consistent with the usual Bohm sheath criterion in electropositive systems (i.e., all ion
species are positively charged) as well as modifications of the Bohm condition for elec-
tronegative systems (i.e., at least one ion species is negatively charged). Zero flux boundary
conditions are imposed for negative ion speciesi (qi < 0).

Dirichlet boundary conditions are specified for the potentialφ in (2.8) corresponding to
an applied voltageφb at the boundary. The value ofφb can vary spatially along the boundary
and with each time step. For example, in the simulation of an ICP reactor,φb along the
wafer boundary could be prescribed as a sinusoidally varying waveform representing the
applied radiofrequency (RF) bias.

The charged species described by (2.1)–(2.8) are generated from, and collide with, a
background neutral gas. Although the neutral flow is important, we restrict our attention in
this paper to the charged species only and assume that the dynamics of the neutral species
are already known.
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3. SINGLE-LEVEL ALGORITHM

Assume that we have known values for all quantities at timetn, and that we wish to
integrate (2.1)–(2.8) to a new timetn+1= tn+1t . The time step1t is chosen such that

1t ≤ αmin

(
1x

µn
∣∣En

x

∣∣ , 1y

µn
∣∣En

y

∣∣
)
, (3.15)

which is the stability restriction for the explicit steps in the algorithm. Since (3.15) is based
on data at the beginning of the time step, we incorporate the factorα (typically α= 1/2)
to account for velocity changes during the step. As described in [9], the integration is split
into five main steps, which we now describe.

Step 1. Advance the ions using a second-order Godunov method.For each speciesi ,
the system of ion equations (2.4)–(2.6) can be written as a single vector equation

∂U

∂t
+ ∂

∂x
F(U )+ ∂

∂y
G(U ) = H(U, E), (3.16)

where we have the definitions

U ≡


ni
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0y

1
2ui · ui + Ei /mi

 , 0x ≡ ni ui,x, 0y ≡ ni ui,y (3.17)

c2 ≡ γi kTi + kTe

mi
(3.18)
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02
x

ni
+ c2ni

0x0y
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1
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)
0x

 , G(U ) ≡


0y

0x0y

ni

02
y
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+ c2ni(

1
2ui · ui + Ei /mi + c2

)
0y


(3.19)

H(U, E) ≡ 1

mi


S0

kTe
∂ni
∂x + qi ni Ex + S1x

kTe
∂ni
∂y + qi ni Ey + S1y

∇ · (ni kTeui )+ qi ni ui · E + S2

 , (3.20)

where S0, S1, and S2 denote the collisional and gain/loss terms in the right-hand sides
of (2.4)–(2.6). The system is slightly modified for the electronegative case as described
in [9]. Note that (3.18) defines theplasmasound speed rather than the usual neutral gas
speed

√
γi kTi /mi . The inclusion of thekTe/mi term in (3.18) is balanced by the density

derivative terms in the right-hand side (3.20) (i.e., the first term in the second, third, and
fourth components of (3.20)). The asymptotic analysis presented in [9] shows that this
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particular organization of the ion equations, when combined with the electron and Poisson
equations, results in a slowly varying source term (3.20) that can be lagged in an explicit
time integration.

We use a second-order, unsplit Godunov method [8] to solve (3.16). The update scheme
in a typical cell(i, j ) is

Un+1
i, j = Un

i, j −
1t

1x

[
F
(
Ũ

n
i+ 1

2 , j

)− F
(
Ũ

n
i− 1

2 , j

)]− 1t

1y

[
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(
Ũ

n
i, j+ 1

2

)− G
(
Ũ

n
i, j− 1

2

)]
+ 1t

2

[
H
(
Un

i, j , En
)+ H

(
U ∗n+1

i, j , En+1
)]
, (3.21)

whereŨ
n
i±1/2, j andŨ

n
i, j±1/2 are the Riemann problem solutions at the right, left, top, and

bottom edges of cell(i, j ), respectively. The second of the two terms discretizing the source
termH(U, E) depends uponU ∗n+1

i, j , which is a provisional value at timetn+1 computed us-
ing approximate values for the state variables attn+1, as well as the fieldEn+1 at the new
time. Since the latter quantity is not yet known, we compute only the provisional valueU ∗n+1

i, j

and the flux divergences∇ · (ni ui ), which are required in Step 3 below, at this stage of the
algorithm. The final ion update (3.21) will be completed after the new field is computed.

Step 2. Calculate electron diffusive flux.We next compute a slope-limited, Taylor-series
predictionnn+1/2

e of the edge electron density attn+1/2 upwinded relative to the drift velocity
ūn

e. We then combine (2.1) and (2.2) to solve

n̂n+1
e − nn

e

1t
= −∇ · (nn+1/2

e ūn
e

)+∇ · ηn∇(n̂n+1
e kTn

e

)+∑
j

Rn
ej (3.22)

for n̂n+1
e , which is a prediction of the electron density at timetn+1 that we employ solely in

order to compute the electron diffusive flux

0n+1
diff ≡ −ηn∇(n̂n+1

e kTn
e

)
. (3.23)

Step 3. Calculate new potential and electron density.Using the electron diffusive flux
0n+1

diff and the electron densitynn+1/2
e , we advance the potential by solving

∇ ·
[
ε0

e
∇φn+1+1t F(φn+1)

]
= nn

e −
∑

i

qi

e
nn

i +1t∇ ·
(∑

i
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e
(ni ui )

n+1/2− 0n+1
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)
,

(3.24)

where

F(φn+1) ≡
{

nn+1/2
e µn∇φn+1 on interior cell edges

nn+1/2
e w̄e

(
kTn

e , φ
n+1
)

on boundary cell edges.
(3.25)

We then compute the new electron density via

nn+1
e = nn

e −1t∇ · 0n+1
e +1t

∑
j

Rn
ej, (3.26)
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where

0n+1
e ≡ F(φn+1)+ 0n+1

diff (3.27)

and0n+1
diff is assumed to vanish at the problem boundary. The new field is

En+1 ≡ −∇φn+1. (3.28)

Note that the implicit treatment of the electron drift flux in (3.24) transforms an otherwise
easy-to-solve Poisson equation into a nonlinear (due to the electron flux boundary condition)
equation with a variable-coefficient Jacobian. The scaling analysis presented in [9] shows,
however, that this modification is essential to avoid a severe time step restriction. Fortunately,
given time steps satisfying (3.15), the nonlinear problem (3.24) can be adequately solved
using only a couple of Newton iterations after the first few time steps, during which the
performance of the Newton iteration depends upon the prescribed initial conditions. The
Jacobian system is solved in each Newton step using a multigrid algorithm [9].

Step 4. Calculate new electron internal energy.Usingnn+1
e , 0n+1

e , andEn+1, we obtain
the internal electron energykTn+1

e at the new time by solving

3

2
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e kTn+1

e − nn
ekTn

e

1t
+∇ ·
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2
0n+1

e kTn+1/2
e

)
= −e0n+1

e · En+1+ 5

2
∇ · (ηnnn+1/2

e kTn+1/2
e ∇kTn+1

e

)+ Pn
ind

−
∑
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3me
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kTn

e ν
n
ejn

n
e +

∑
j

εn
ej S

n
ej, (3.29)

whereTn+1/2
e is a slope-limited, Taylor-series prediction of the edge temperature attn+1/2

upwinded relative to the velocityun
e. Collecting all terms involvingTn+1

e on the left-hand
side and incorporating the boundary conditions (2.14), we observe that (3.29) is a linear
system with a symmetric, positive definite coefficient matrix.

Step 5. Complete calculation of new ion data.The last step is the computation of the
ion data at the new time step via (3.21).

4. SOLUTION OF THE FLUID EQUATIONS ON LOCALLY REFINED GRIDS

LetÄc denote a union of disjoint, uniform, rectangular grids. LetÄ f also denote a union
of disjoint, uniform, rectangular grids, each of which is obtained by refining a rectangular
subgrid ofÄc by a factornref. Let P(Ä f ) denote the projection of thefine gridÄ f onto the
coarse gridÄc. Define thecomposite gridby

Äcomp≡ Ä f ∪ (Äc\P(Ä f )) (4.30)

and letI denote the interface between the coarse grid componentÄc\P(Ä f ) and the fine
grid componentÄ f of Äcomp (see Fig. 4.1).
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FIG. 4.1. Coarse, fine, and composite grids.

4.1. Solution of Poisson’s Equation on a Composite Grid

We want to extend the algorithm described in the preceding section for use on the com-
posite grid (4.30). A key requirement is the enforcement of Poisson’s equation

−ε01φ = ρ (4.31)

at each time step, so we begin by describing what it means to solve (4.31) on (4.30). As
in the single grid case, we will not be solving (4.31) directly during the integration of the
fluid system on the composite grid, except for initialization or diagnostic purposes. Never-
theless, the separate consideration of (4.31) here will introduce some important concepts
and notation.

OnÄ f or Äc, the standard five-point cell-centered discretization of (4.31) can be ex-
pressed in terms of edge-centered fields as

ε0(−Ei−1/2, j + Ei+1/2, j − Ei, j−1/2+ Ei, j+1/2) = hρi, j , (4.32)

where, e.g.,

Ei+1/2, j ≡ −(φi+1, j − φi, j )/h, (4.33)

φi, j andρi, j are the potential and charge at cell center(i, j ), respectively, andh is the grid
size. Dirichlet conditions are imposed on the physical boundary by extrapolating interior
potential values and the prescribed boundary value to a “ghost” cell exterior to the problem,
as is depicted in Fig. 4.2(a).
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FIG. 4.2. (a) At a physical boundary, interior and boundary values (s) are used to extrapolate to the ghost
cell (◦); the ghost value and the other interior values (•) are used to construct the Laplacian at (a). (b) Locations
of coarse grid boundary conditions (d), tangentially interpolated values (◦), fine grid cells (•), and ghost cells
(n andu). (c) Domain of dependence (• andd) of the Laplacian at a fine cell (s) adjacent to the coarse/fine
interface.

A composite discretization of (4.31) on (4.30) is obtained by applying (4.32) separately
onÄ f andÄc\P(Ä f )with the definition of the edge-centered fields onI suitably modified
to enforce continuity of the potential and field across the interface. Since each coarse grid
edge onI is the union ofnref fine grid edges, field continuity requires that the coarse fields
at such edges be obtained as the average of the fields on the corresponding fine edges.

To obtain the fine grid fields onI , we require potentials onÄc\P(Ä f ) interpolated to
the fine grid resolution and centered in a single layer of ghost cells surroundingÄ f , which
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then enables (4.33) to also be applied on fine grid edges contained inI . We employ an
interpolation scheme whose stencil is depicted in Fig. 4.2(b) for a sample grid structure
with nref= 4. The potentials at coarse cell centers (large filled circles) are first quadratically
interpolated tangentially toI to obtain values at the locations depicted by the unfilled circles.
These values are then linearly interpolated normally toI using the potential values at the
centers of the fine cells abuttingI (small filled circles) to obtain potentials at the ghost
cell centers depicted by the triangles and squares. As suggested by the overlapping triangle
and rectangle in the upper right-hand corner of the coarse grid region in Fig. 4.2(b), the
potentials interpolated in this way may not be unique, with the value denoted by the triangle
being used to compute the field on the vertical fine edge to the right, and the value denoted
by the square being used to compute the field on the horizonal fine edge immediately
above.

The resulting discretization of (4.31) onÄcomp is second-order accurate. The corre-
sponding discrete Laplacian operator is not symmetric, however, as can be deduced from
Fig. 4.2(c), which displays the operator stencil based at the circled fine grid cell abuttingI .
For example, the coarse cell labeled “a” participates in the stencil based at the circled fine
grid cell, but the converse is not the case. Effective multilevel algorithms can nevertheless
be employed to solve the discrete system, as will be described in Section 4.4 below. These
multilevel algorithms rely heavily upon the observation that the solutionφ of the composite
Poisson equation is also obtainable as the solution of a coupled pair of Poisson equations
onÄ f andÄc,

−ε01φ f = ρ f ≡ ρ onÄ f , φ f = Q(φ f , φc) at I (4.34)

−ε01φc =
{
ρ − ε0∇ · δE onÄc\P(Ä f )

〈ρ f 〉P(Ä f ) on P(Ä f )
(4.35)

by setting

φ =
{
φc onÄc\P(Ä f )

φ f onÄ f .
(4.36)

Here, Q denotes the linear boundary operator atI implicitly defined by the previously
described high-order tangential interpolation of coarse grid potentialsφc combined with
normal interpolation of fine grid potentialsφ f . 〈ρ f 〉P(Ä f ) denotes the volume-weighted
average ofρ onto P(Ä f ). In (4.35),

δE ≡ −〈∇φ f 〉I +∇φc, (4.37)

where〈·〉I denotes the arithmetic averaging of fine edge data to coarse edge data onI . Here,
and in the remainder of this section, we adopt the convention thatδF denotes the difference
on coarse edges inI of a generic quantityF computed on the coarse grid and fine grids. For
such quantities, it is also convenient to define the divergence∇ · δF as the divergence of
the extension by zero ofδF to the remaining edges ofÄc. The termε0∇ · δE has the form
of an integrated surface charge, but in fact results solely from the change of grid resolution
at I . In the solution of (4.35), this “coarse–fine” surface charge causes a jump in the coarse
grid field at I such that continuity of the composite field is obtained.

Because only the coarse grid potentialφc on Äc\P(Ä f ) is used in constructing the
composite solution (4.36), it might at first seem inefficient to be solving (4.35) on the entire
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coarse gridÄc versus solving just onÄc\P(Ä f ) andÄ f with matching conditions atI . This
is not the case, however, since we intend to solve (4.34)–(4.35) with a multilevel method in
which the approximate solutions of (4.35) in residual-correction form computed onP(Ä f )

represent coarse grid corrections to smoothed approximate solutions of (4.34). This results
in a very effective iterative solution method. This approach also avoids the need to compute
solutions only onÄc\P(Ä f ), which may be far more geometrically complex than either
gridÄc or gridÄ f .

4.2. Solution of the Plasma Fluid System on a Composite Grid

With the composite solution of Poisson’s equation as background, let us now consider
the integration of the plasma fluid system. As in the single grid case, discrete time evolution
equations on the composite grid can be obtained by combining a first-order difference of
Poisson’s equation over a time step1t = tn+1− tn with the continuity equations for the
ions and electrons. Again with the electron drift flux treated implicitly, this yields

nn+1
e = nn

e −1t∇ · (0drift
(
nn+1/2

e , φn+1
)+ 0diff

)+1t Sn (4.38)

nn+1
i = nn

i −1t∇ · 0i +1t Sn (4.39)

∇ ·
(
ε0

e
∇φn+1+1t0drift

(
nn+1/2

e , φn+1
))

= nn
e −

∑
i

qi

e
nn

i +1t

(∑
i

qi

e
∇ · 0i −∇ · 0diff

)
(4.40)

in addition to evolution equations for the ion momentum and electron temperature, which
we omit for now. In (4.38) and (4.39),Sn denotes the source/sink term.

Implied in (4.38)–(4.40) are matching conditions atI that couple the dependent variables
onÄ f andÄc\P(Ä f ). Conservation of mass (i.e., hyperbolic matching conditions) requires
that

0x,c = 〈0x, f 〉I , x = i, drift, diff , (4.41)

where0x, f and0x,c are the fine and coarse fluxes onI , respectively. Continuity of the
potential and field (i.e., second-order elliptic operator matching conditions) is achieved by
enforcing

φn+1
f = Q

(
φn+1

f , φn+1
c

)
(4.42)

n · ∇φn+1
c = 〈n · ∇φn+1

f

〉
I

(4.43)

on I , wheren is a unit normal toI .
Although the composite system could be integrated directly, such an approach would be

penalized by the need to use a single time step for both spatial grid resolutions. In particular,
given comparable electron drift velocities, the time step will be limited by the stability re-
quirements onÄ f , which might represent only a very small fraction of the physical domain.
To avoid the resulting unnecessary additional work onÄc\P(Ä f ), we instead employ a
predictor–corrector approach comprising separate integrations on the coarse and fine grids
coupled by a composite sychronization step. Specifically,
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1. Coarse predictor step. Use the single grid algorithm of Section 3 to integrate the
plasma fluid system onÄc over a time step1tc= tn+1− tn.

2. Fine predictor step. Integrate the system onÄ f over the same time intervaltn to
tn+1 usingncycle uniform time steps1t f ≡1tc/ncycle, with boundary values interpolated
spatially and temporally fromÄc\P(Ä f ).

3. Composite synchronization step. Solve for a potential correction on the composite
grid to restore matching conditions at the coarse–fine interfaceI that were violated during
the separate coarse and fine integrations.

The corrected coarse and fine predictions are then combined to obtain a composite so-
lution that closely approximates, with mild assumptions, the solution one would have ob-
tained by integrating the composite system using the fine grid time steps everywhere. That
is, lettingm=m(n), . . . ,m(n+ 1) index the time steps taken on the fine grid, we obtain
approximations to the composite quantitiesnm(n+1)

e , nm(n+1)
i , andφm(n+1) satisfying

nm(n+1)
e = nm(n)

e −
∑

m

1t f
[∇ · (0drift

(
nm+1/2

e , φm+1
)+ 0m+1/2

diff

)− Sm
]

(4.44)

nm(n+1)
i = nm(n)

i −
∑

m

1t f
(∇ · 0m+1/2

i − Sm
)

(4.45)

∇ ·
(
ε0

e
∇φm(n+1) +

∑
m

1t f 0drift
(
nm+1/2

e , φm+1
))

= nm(n)
e −

∑
i

qi

e
nm(n)

i +
∑

m

1t f

(∑
i

qi

e
∇ · 0m+1/2

i −∇ · 0m+1/2
diff

)
(4.46)

with the conditions analogous to (4.41)–(4.43) onI . We now describe this algorithm in
more detail.

4.2.1. Coarse Predictor Step

OnÄc, select a time step1tc= tn+1− tn and perform the integration

nn+1
e,c = nn

e,c −1tc∇ ·
(
0drift

(
nn+1/2

e,c , φn+1
c

)+ 0diff ,c
)+1tcSn

c (4.47)

nn+1
i,c = nn

i,c −1tc∇ · 0i,c +1tcSn
c (4.48)

∇ ·
(
ε0

e
∇φn+1

c +1tc0drift
(
nn+1/2

e,c , φn+1
c

))
= ε0

e
∇ · δEn+1tc∇ ·

(
nn+1/2

e,c µnδEn
)+ nn

e −
∑

i

qi

e
nn

i

+1tc

(∑
i

qi

e
∇ · 0i,c −∇ · 0diff ,c

)
. (4.49)

This is the same single-level integration described in Section 3 except for the first two terms
in the right-hand side of (4.49) involvingδEn, which is computed as in (4.37) usingφn

f and
φn

c . We include theδEn terms in (4.49) as approximations of the analogous quantities at
the new timetn+1 to anticipate better the effect of the subsequent fine grid integrations. As
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will be seen later, this modification of the coarse grid prediction reduces the magnitude of
the correction required in the composite synchronization step.

4.2.2. Fine Predictor Step

Next, we integrate the system onÄ f over the same time intervaltn to tn+1 usingncycle

uniform time steps1t f ≡1tc/ncycle. Let m=m(n), . . . ,m(n+ 1) index the time steps
taken on the fine grid. We have

nm(n+1)
e, f = nm(n)

e, f −
∑

m

1t f
[∇ · (0drift

(
nm+1/2

e, f , φm+1
f

)+ 0m+1/2
diff , f

)− Sm
f

]
(4.50)

nm(n+1)
i, f = nm(n)

i, f −
∑

m

1t f
(∇ · 0m+1/2

i, f − Sm
f

)
(4.51)

∇ ·
(
ε0

e
∇φm(n+1)

f +
∑

m

1t f 0drift
(
nm+1/2

e, f , φm+1
f

))

= nm(n)
e −

∑
i

qi

e
nm(n)

i +
∑

m

1t f

(∑
i

qi

e
∇ · 0m+1/2

i, f −∇ · 0m+1/2
diff , f

)
. (4.52)

In performing this integration, boundary values are needed at the coarse–fine interfaceI .
These values are obtained from the corresponding values onÄc\P(Ä f ) by linear interpo-
lation in time and appropriate spatial interpolations. Specifically, potential boundary values
at I are given by

φm
f = Q

(
φm

f ,
m(n+ 1) −m

ncycle
φn

c +
m−m(n)

ncycle
φn+1

c

)
, m= m(n)+ 1, . . . ,m(n+ 1).

(4.53)

Boundary values for the fine grid electron and ion data atI are obtained from conservative
spatial interpolation of their corresponding values onÄc\P(Ä f ), linearly interpolated in
time, to a layer of ghost cells surroundingÄ f .

4.2.3. Composite Synchronization Step

Having integrated the fluid system on bothÄ f andÄc\P(Ä f ), we would like to compose
a solution of (4.44)–(4.46) from the integrated solutions obtained from (4.47)–(4.49) and
(4.50)–(4.52). However, it is not possible to do this immediately for two reasons. First, the
interpolated Dirichlet boundary condition (4.53) only ensures that the potential is continuous
at I , but nothing has been done to enforce field continuity there. In other words, Poisson’s
equation is not yet satisfied since the composite potential still needs to be adjusted to satisfy
also the interface conditions (4.43). Second, since different fluxes were used onI during the
integration of the coarse and fine grids, (4.41) does not necessarily hold and conservation
must be restored by an appropriate “refluxing” of ions and electrons. Such a redistribution
of charge again implies a modification of the composite potential.

One solution to this dilemma would be to iterate the coarse and fine grid integrations
until we obtain a composite solution that satisfies the hyperbolic and elliptic matching
conditions. This is clearly computationally unattractive. Another alternative would be to
determine corrections to the fine and coarse solutions in order to obtain a solution satisfying
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the matching conditions. If we were to formally subtract the coarse and fine solutions from
the composite solution, we would hope to obtain an equation for these corrections. With
very mild approximations, this is what we indeed obtain. The approximations we make are
based on three principles.

The first principle is that the inertia of the ions makes them insensitive to changes in
the potential over the relatively small time steps, which are determined by the significantly
higher electron mobility. The ion density and momenta will not be immediately affected by
small changes in the field. Consequently, we consider charge redistribution due to composite
potential corrections as entirely due to a change in the electron density. It is also sufficient
to include field corrections in the momentum source term (3.20) in subsequent time steps.

Second, for quasi-neutral plasmas, perturbations to the electron density (for a single
coarse step) are very important as they affect the space charge, but they are not important
for quantities involving the density alone. For example, a change of 1 part in 1000 for
the electron density will have little effect on the calculated pressure gradient, but it may
drastically change the space charge. This observation is used in three approximations. First,
the edge centered electron densities used in the fine and coarse modified Poisson solves are
approximately equal to those we would have if we were integrating the composite system
itself. The same can be said regarding the diffusive flux terms used for the fine and coarse
integrations. Third, the changes in ion and electron densities due to the ratesRej andRi j do
not affect the net charge and therefore do not require correction after the separate integration
of the coarse and fine grid systems.

Our final observation is that the electron temperature and the dependent rate coefficients
change slowly over a time step. We may therefore neglect changes in the rate coefficients
due to the composite corrections.

With these assumptions, we proceed in deriving equations for the potential and electron
density corrections that allow us to satisfy the governing equations along with the hyperbolic
and elliptic matching conditions.

We seek a potential correctionφ∗ = (φ∗f , φ∗c ) satisfying the composite system obtained
bysubstituting

φm ≡
{
φm

f + φ∗f onÄ f ,
m= m(n)+ 1, . . . ,m(n+ 1)

φn+1
c + φ∗c onÄc\P(Ä f ),

(4.54)

into (4.46), then subtracting (4.49) onÄc\P(Ä f ) and (4.52) onÄ f . The correction must
also satisfy the continuity requirement

φ∗f = Q(φ∗f , φ
∗
c ) (4.55)

at the coarse–fine boundaryI . Let us now determine the equation to be satisfied byφ∗ on
Äc\P(Ä f ). On edges ofÄc\P(Ä f ) contained inI , define

δ0i ≡
〈

1

1tc

∑
m

1t f 0
m+1/2
i, f

〉
I

− 0i,c (4.56)

δ0diff ≡
〈

1

1tc

∑
m

1t f 0
m+1/2
diff , f

〉
I

− 0diff ,c. (4.57)
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Substituting (4.54) into (4.46), with1t =1tc, then subtracting (4.49) onÄc\P(Ä f ), we
obtain

∇ ·
[
ε0

e
∇(φm(n+1) − φn+1

c

)+1t0∗drift

]
= −ε0

e
∇ · δEn −1t∇ · (nn+1/2

e,c µnδEn
)

+1t∇ ·
(∑

i

qi

e
δ0i − δ0diff

)
, (4.58)

where

0∗drift ≡



〈
1
1tc

∑
m1t f 0drift

(
nm+1/2

e , φm+1
)〉

I
on edges ofÄc\P(Ä f )

−0drift
(
nn+1/2

e,c , φn+1
c

)
contained inI

1
1tc

∑
m1t f 0drift

(
nm+1/2

e , φm+1
)

on edges ofÄc\P(Ä f )

−0drift
(
nn+1/2

e,c , φn+1
c

)
not contained inI .

(4.59)

In the first term of (4.58), we observe that

∇(φm(n+1)−φn+1
c

) = {∇φ∗c on edges ofÄc\P(Ä f ) not contained inI

〈∇φ∗f 〉I on edges ofÄc\P(Ä f ) contained inI .
(4.60)

On edges ofÄc\P(Ä f ) not contained inI and not part of the physical boundary, (4.59)
yields

0∗drift = nn+1/2
e,c µn∇φ∗c . (4.61)

Using (4.59), on the edges ofÄc\P(Ä f ) contained inI , we have

0∗drift =
〈

1

1tc

∑
m

1t f n
m+1/2
e µm

(∇φm+1
f +∇φ∗)〉

I

− nn+1/2
e,c µn∇φn+1

c (4.62)

≈
〈

1

1tc

∑
m

1t f 0drift
(
nm+1/2

e, f , φm+1
f

)〉
I

− 0drift
(
nn+1/2

e,c , φn+1
c

)
+ 〈nm(n+1)−1/2

e µm(n+1)−1
〉

I 〈∇φ∗〉I , (4.63)

in which we make the approximation〈
nm+1/2

e µm∇φ∗〉I ≈
〈
nm+1/2

e µm
〉

I 〈∇φ∗〉I . (4.64)

Therefore, if we let

0drift(φ
∗
c )

≡


nn+1/2

e µn∇φ∗c on edges ofÄc\P(Ä f ) not contained
in I or the physical boundary〈

nm(n+1)−1/2
e, f µm(n+1)−1

〉
I∇φ∗c on edges ofÄc\P(Ä f ) contained inI

(4.65)
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on the edges ofÄc\P(Ä f ) not contained in the physical boundary, and define

δEn+1 ≡ −〈∇φn+1
f

〉
I
+∇φn+1

c (4.66)

δ0e ≡
〈

1

1tc

∑
m

1t f 0drift
(
nm+1/2

e, f , φm+1
f

)〉
I

− 0drift
(
nn+1/2

e,c , φn+1
c

)
+ nn+1/2

e,c µnδEn + δ0diff (4.67)

on the edges ofÄc\P(Ä f ) contained inI , (4.58) becomes

∇ ·
(
ε0

e
∇φ∗c +1t0drift(φ

∗
c )

)
= −∇ ·

((
ε0

e
+ 〈1tnm(n+1)−1/2

e, f µm(n+1)−1
〉

I

)
(〈∇φ∗f 〉I −∇φ∗c )

)

+ ε0

e
∇ · (δEn+1− δEn)+1t∇ ·

(∑
i

qi

e
δ0i − δ0e

)
,

φ∗c = 0 on the physical boundary. (4.68)

To obtain the equation determiningφ∗ on Ä f , we subtract (4.52) from (4.46), which
yields

∇ ·
(
ε0

e
∇φ∗f +1t0∗drift

)
= 0, φ∗f =

{
Q(φ∗f , φ

∗
c ) at I ,

0 on the physical boundary,
(4.69)

where

0∗drift ≡
1

1tc

∑
m

1t f
[
0drift

(
nm+1/2

e , φm+1
)− 0drift

(
nm+1/2

e, f , φm+1
f

)]
. (4.70)

On the non-boundary edges ofÄ f , 0
∗
drift is approximated by

0drift(φ
∗
f ) ≡ nm(n+1)−1/2

e, f µm(n+1)−1∇φ∗f . (4.71)

Hence, onÄ f ,

∇ ·
(
ε0

e
∇φ∗f +1t0drift(φ

∗
f )

)
= 0, φ∗f =

{
Q(φ∗f , φ

∗
c ) at I ,

0 on the physical boundary.
(4.72)

The pair of equations (4.68) and (4.72) thus form the system to be solved for the composite
potential correctionφ∗. It only remains to specify the modifications to be made on physical
boundary edges due to (2.12). On the edges ofÄc\P(Ä f ) on the physical boundary, (4.59)
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implies that

n · 0∗drift

= 1

1tc

∑
m

1t f n
m+1/2
e,c

v̄m
e

4
exp
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−e
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b
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e

]
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e

4
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c − φm+1
b

)
kTn

e

]

≈ nn+1/2
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v̄n
e

4

{
1

1tc

∑
m

1t f exp
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−e
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φm+1− φm+1

b

)
kTn

e

]
− exp
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−e
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b

)
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e
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= nn+1/2
e,c

v̄n
e

4
exp

[
−e
(
φn+1

c − φm+1
b

)
kTn

e

][
exp

(
− eφ∗

kTn
e

)
− 1

]
= n · 0drift

(
nn+1/2

e,c , φn+1
c

)[
exp

(
− eφ∗

kTn
e

)
− 1

]
(4.73)

and similarly on the boundary edges inÄ f . Thus, (4.65) and (4.71) are supplemented by

n · 0drift(φ
∗
c ) ≡ n · 0drift

(
nn+1/2

e,c , φn+1
c

)[
exp

(
− e

kTn
e

φ∗c

)
− 1

]
(4.74)

n · 0drift(φ
∗
f ) ≡ n · 0drift

(
nm(n+1)−1/2

e, f , φ
m(n+1)
f

)[
exp

(
− e

kTn
e

φ∗
)
− 1

]
, (4.75)

respectively.
Similar subtractions of the ion and electron continuity equations show that

nm(n+1)
i ≡

{
nm(n+1)

i, f onÄ f

nn+1
i,c −1t∇ · δ0i onÄc\P(Ä f )

(4.76)

nm(n+1)
e ≡

{
nm(n+1)

e, f −1t∇ · 0drift(φ
∗) onÄ f

nn+1
e,c −1t∇ · (0drift(φ

∗)+ δ0e) onÄc\P(Ä f )
(4.77)

satisfy (4.44)–(4.45).
In the single-level integration algorithm, the electron diffusive flux0diff is computed

using a prediction̂nn+1
e of the electron density obtained by solving (3.22). In solving this

linear system, it is convenient to regardn̂n+1
e kTn

e as the dependent variable. We therefore
require a boundary value for this quantity for the corresponding linear solves occurring
during the fine grid integration (4.50)–(4.52). For this, we again employ linear interpolation
in time and the high-order spatial interpolation operatorQ, i.e.,

n̂m+1
e, f kTm

e, f = Q

(
n̂m+1

e, f kTm
e, f ,

m(n+ 1)−m

ncycle
nn

e,ckTn+1
e,c +

m−m(n)

ncycle
nn+1

e,c kTn+1
e,c

)
(4.78)

for m=m(n)+ 1, . . . ,m(n + 1). Note that, as in the single-level integration, we do not
correct the diffusive flux following the composite correction step (4.77).

Restoration of ion momentum conservation is handled similarly to (4.76). Specifically,
momentum flux differences are accumulated onI during the coarse and fine level integra-
tions, then used to correct the coarse level ion momenta. This correction is independent of
all other composite synchronization steps.

The composite synchronization of the coarse and fine level integrated electron tempera-
tures is performed in a manner similar to that in which the potential correction is performed.
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After the integration (4.47)–(4.49) of the potential and electron density over1t =1tc on
Äc\P(Ä f ), the temperature equation is also integrated to obtain

3

2
nn+1

e,c kTn+1
e,c −

3

2
nn

ekTn
e +1t∇ ·

(
5

2
0n+1/2

e,c kTn+1/2
e,c

)
= 1t

[
∇ ·
(

5ηn
c

2
nn+1/2

e,c kTn+1/2
e,c ∇kTn+1

e,c

)
+ Pn

net

]
, (4.79)

where

Pn
net≡ −e0n

e · En + Pn
ind−

∑
j

3me

mj
kTn

e ν
n
ejn

n
e +

∑
j

εej S
n
ej. (4.80)

After the integration (4.50)–(4.52) of the potential and electron densities onÄ f , the tem-
perature equation is integrated to obtain

3

2
nm(n+1)

e, f kTm(n+1)
e, f −3

2
nm(n)

e kTm(n)
e +

∑
m

1t f∇ ·
(

5

2
0

m+1/2
e, f kTm+1/2

e, f

)

=
∑

m

1t f

[
∇ ·
(

5ηm
f

2
nm+1/2

e kTm+1/2
e, f ∇kTm+1

e, f

)
+ Pm

net

]
, (4.81)

where

Pm
net≡ −e0m

e, f · Em
f + Pm

ind−
∑

j

3me

mj
kTm

e ν
m
ejn

m
e, f +

∑
j

εej S
m
ej (4.82)

with boundary values atI interpolated from the fine grid form=m(n)+ 1, . . . ,m(n+ 1):

Tm
e, f = Q

(
Tm

e, f ,
m(n+ 1) −m

ncycle
Tn

e,c +
m−m(n)

ncycle
Tn+1

e,c

)
. (4.83)

The potential and electron densities are then corrected by solving (4.68) and (4.72) and
performing the updates (4.54) and (4.77). Letn∗e and0∗e denote the corrections made to the
electron density and flux, respectively, during this step (e.g.,n∗e,c= nn+1

e − nn+1
e,c ). We then

seek a composite temperature correctionT∗e = (T∗e, f , T
∗
e,c) such that

Tm
e ≡

{
Tm

e, f + T∗e, f onÄ f

Tn+1
e,c + T∗e,c onÄc\P(Ä f )

m= m(n)+ 1, . . . ,m(n+ 1) (4.84)

with

T∗e, f = Q(T∗e, f , T
∗
e,c) at I

∇T∗e = 0 at the physical boundary
(4.85)

approximates the solution of the composite system integrated over the same fine grid time
steps,

3

2
nm(n+1)

e kTm(n+1)
e − 3

2
nm(n)

e kTm(n)
e +

∑
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1t f∇ ·
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)
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(

5ηm

2
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e kTm+1/2
e ∇kTm+1

e

)
+ Pm

net

]
, (4.86)



SOLUTION OF PLASMA FLUID EQUATIONS 569

where

Pm
net≡ −e0m · Em + Pm

ind−
∑

j

3me

mj
kTm

e ν
m
ejn

m
e +

∑
j

εej S
m
ej. (4.87)

After the fact that

nn+1
e Tn+1

e − nn+1
e,c Tn+1

e,c = nn+1
e T∗e + nn+1

e Tn+1
e,c − nn+1

e,c Tn+1
e,c

= nn+1
e T∗e + n∗eTn+1

e,c , (4.88)

is used and approximations similar to those used in computing the potential correction are
made, subtraction of (4.79) from (4.86) onÄc\P(Ä f ) yields

3

2
nn+1

e kT∗e,c −1t∇ ·
(

5ηn

2
nn+1/2

e kTn+1/2
e ∇kT∗e,c

)
= −3
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2
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〉
I
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5
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]
, (4.89)

where

δQ =
〈

1
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e, f
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−∇ ·
(

5

2
0n+1/2

e,c kTn+1/2
e,c
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2
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Furthermore, the subtraction of (4.81) from (4.86) onÄ f yields

3

2
nm(n+1)

e kT∗e, f −1t∇ ·
(

5ηm(n+1)−1

2
nm(n+1)−1/2

e kTm(n+1)−1/2
e ∇kT∗e, f

)
= −3

2
n∗ekTm(n+1)

e, f −1t∇ ·
(

5

2
0∗ekTm(n+1)−1/2

e

)
. (4.91)

The pair (4.89) and (4.91) together with (4.85) is therefore the composite system to be
solved for the correctionT∗e .

4.3. Generalization to an Arbitrary Number of Refinement Levels

The algorithm just described for two grid levels can be generalized to an arbitrary number
of levels. Let{Äl , l = 0, . . . , lmax} denote a refinement hierarchy with successive levels
related as in the two-level case by

P(Äl ) ⊂ Äl−1, l = 1, . . . , lmax, (4.92)

whereP is a projection operator. EachÄl is again the union of disjoint, rectangular grids
obtained by refining rectangular subgrids ofÄl−1 by a factornref,l . For this general case, we
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FIG. 4.3. Multilevel advance and composite synchronization schedule.

also require theproper nestingof levels. Specifically, we stipulate thatP(Äl ) be properly
contained inÄl−1 for l = 1, . . . , lmax, except perhaps at the physical domain boundary.

Our two-level algorithm consisted of the integration of the coarse grid equations over
a time step, followed byncycle fine grid integrations over the same coarse time step and a
composite synchronization of the two levels. For the general case, this can be implemented
recursively, with the composite potential and temperature corrections occurring at the ends
of time steps at each level (except the finest level) and involving all finer levels. Figure 4.3
schematically depicts the time step advance and composite synchronization schedule for
a four-level problem withnref,0= nref,1= 2 andnref,2= 4. The horizontal arrows denote
single-level time advance steps, while the vertical arrows denote synchronization of the
composite grid.

A perhaps subtle detail in our description of the two-level algorithm was the use of
approximations such as

1

1tc

∑
m

1t f n
m+1/2
e µm ≈ nm(n+1)−1/2

e µm(n+1)−1, (4.93)

which replace the average of fine edge data over the coarse time step with the data at the last
fine time step. If such approximations are not made, then in the case of more than two grid
levels the composite synchronizations would require the similar accumulation and averaging
of fine edge data on a given levell overall coarser time steps1tl ′ , l ′ = 0, . . . , l − 1, since
level l will eventually participate in a composite synchronization with each of these coarser
levels. Although it is possible to do this, we have determined empirically that approximations
such as (4.93), which enable a totally recursive implementation, do not harm the accuracy
of the method.

4.4. Solution of the Composite Systems

The synchronization of potential and electron temperature lead to the composite systems
(4.68)–(4.72) and (4.89)–(4.91), respectively. In this subsection, we discuss the solution of
these systems.
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The system (4.68)–(4.72) is nonlinear due to the boundary condition (2.12) on the electron
flux. We therefore employ a composite Newton iteration. In each Newton iteration, we must
solve a composite Jacobian system with the composite nonlinear residual as the right-hand
side, where on each refinement levelÄl the Jacobian has the form of a second-order,
symmetric, elliptic operator

Lnf
l (φl ) ≡ −∇ · (bl∇φl )+ alφl . (4.94)

Since the level operators of the composite temperature system (4.89)–(4.91) are also of the
form (4.94), it suffices to consider the solution of composite systems with operatorsL of
this general form on each level. We generalize the approach described in [20] for Poisson’s
equation to these variable coefficient cases. This is a multilevel algorithm that iterates over
a grid hierarchy{Äl , l = lbase, . . . , lmax} in a multigrid-like fashion, taking care to enforce
the required matching conditions at the boundaries between successive levels. Lettingf
denote the composite system right-hand side andu denote the desired composite solution,
the algorithm can be summarized as

R := f − L(u).
While(|R|>ε| f |)

R := f − L(u).
MGRelax(lmax)

EndWhile

Procedure MGRelax(l ):

If (l = lmax) thenRl := fl − Lnf
l (ul , ul−1)

If (l > lbase) then
ul ,save:= ul

el−1 := 0
el :=Smooth(el , Rl , hl )

ul := ul + el

Rl−1 :=
{〈(

Rl − Lnf
l (el , el−1)

)〉
P(Äl )

onP(Äl )

fl−1− Ll−1(ul ) onÄl−1\P(Äl )

MGRelax(l − 1)
el := el + Interpolate(el , el−1)

el :=Smooth(el , Rl , hl )

ul := ul ,save+ el

Else
Smooth Llbase(elbase)= Rlbase

ulbase:= ulbase+ elbase

EndIf

Here,Ll denotes the level operatorLnf
l restricted toÄl\P(Äl+1) and augmented with the

appropriate refluxing terms to impose the levell + 1 fluxes onI (thenf in the superscript
of the operator defined by (4.94) means “no fine,” implying that there is no dependence on
fine grid information). For theSmooth()function, we use a single red–black Gauss–Seidel
relaxation sweep, and for theInterpolate()step we use piecewise-constant interpolation,
enforcing the boundary conditionel = Q(el , el−1) at the interface between levelsl andl−1.

Using this multilevel composite solution algorithm, we anticipate effective convergence
rates typical of multigrid methods for elliptic problems. Our definition of “effective” in this
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context is nominally an order of magnitude reduction in the residual for each cycle over the
level hierarchy. The convergence of the algorithm depends significantly upon the behavior
of the level operator coefficientsal andbl (4.94), and especially the relationship of these
coefficients onP(Äl+1) to al+1 andbl+1. If these coefficients are smoothly varying over the
problem domain, a simple arithmetic averaging ofal+1 andbl+1 to obtain coarsenedal and
bl on P(Äl+1) is sufficient to obtain an effective convergence rate. This is indeed the case for
the solution of the composite temperature synchronization system (4.89)–(4.91). However,
in the composite Newton solution of the potential synchronization system (4.68)–(4.72),
the linearization of the boundary condition (2.12) results in Jacobian coefficientsal and
bl that vary by a few orders of magnitude at the physical boundary. For such coefficients,
arithmetic averaging of thebl coefficients fails to yield an adequate coarsening. If, instead,
the coefficientsbl are harmonically averaged in the coordinate directions normal to their
respective cell edges, we again obtain good convergence rates. We have also found it
generally advantageous to “W-cycle” the multilevel algorithm, i.e., visit each refinement
level twice before returning to the next finer level. This biases the computational work
toward the coarser levels, which tends to improve both the robustness and the convergence
rate of the iteration, although the work per cycle is increased.

The cost of the composite synchronization steps relative to the sum of the integration
and sychronization times depends upon a number of factors. For problems like those for
which results are reported in Section 5, this ratio is typically about 20–30% in our current
software implementation.

5. RESULTS

The algorithm described above has been implemented in the Adaptive Plasma Model
(APM) computer code. APM is a hybrid C++/FORTRAN code built upon an object oriented
adaptive mesh refinement framework [10].

In this section we present numerical results that will help assess the utility of the previ-
ously described algorithm. Criteria such as accuracy, efficiency, and applicability to prob-
lems of practical interest are addressed. The accuracy of APM on locally refined grids is
analyzed by comparisons to uniform grid calculations. The efficiency of the code is illus-
trated with a comparison of timings and memory requirements for refined grid and uniform
grid calculations with the same peak resolution. The ability to attain very high resolutions
is demonstrated with a simulation of a hydrogen plasma in which a 4 cmlong volume is
modeled with peak resolution of approximately 150µm. This represents a ratio of length
scales of over 250.

Though the previously described algorithm is not limited to a specific application, we
have developed the algorithm with an eye toward modeling ICP reactors. Consequently, this
section concludes with two simulations of practical interest for semiconductor manufac-
turing. First, the relationship between RF coil placement and the ion flux striking a silicon
wafer is examined. Second, RF biasing of a wafer is examined for its effect on ion flux and
energy distributions. Each of these studies shows the need for high resolution calculations.

5.1. Accuracy Using Locally Refined Grids

Consider a locally refined grid calculation with cell sizeshl , l = 0, . . . , lmax, wherehlmax

is the cell size corresponding to the finest cells andh0 the cell size corresponding to the
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coarsest cells. Such a calculation cannot be expected to be more accurate than a uniform grid
calculation with cell sizehlmax. In fact, the degree to which the locally refined calculation
matches the fine, uniform grid calculation is a measure of its accuracy.

Figure 5.4 shows a comparison of potential, ion flux, electron density, and electron
temperature profiles using a locally refined grid, a fine uniform grid, and a coarse uniform
grid. Symmetry boundary conditions on top and bottom of the rectangular domain restrict
the solution variation to the x-direction. The uniform fine grid spacing corresponds to the
finest cells in the refined grid and the uniform coarse grid spacing corresponds to the coarsest
cells. The refined grid uses three levels. Each level was generated by refining the leftmost
three cells of the next coarser level. This grid structure is shown in Fig. 5.5. The agreement
in the fine portion of the locally refined grid is excellent while the agreement in the coarse
region is much better than that in the equivalent coarse grid.

The accuracy of the locally refined calculation depends critically on where the refined
grids are used. The high accuracy of this calculation is due in large part to the placement of
the fine grids near the boundary. As expected this region has the most variation in potential,
density, and charge. Consequently, smaller cells are required to resolve this variation. Con-
versely, the use of coarse grids has little effect on the quasineutral region in the center of the
plasma. In this case the correct placement for the grids was clear, but in a more complex cal-
culation this may not be the case. We are continuing to investigate the relationship between
grid placement and accuracy. Most of our work to date has used heuristically placed grids, but
our code is capable of refining grids based on values of the state variables or their gradients.

5.2. Computational Efficiency

In order for a local refinement strategy to make sense, refined calculations need to show
some computational savings. Figure 5.6a shows the relative CPU times for uniform grid
calculations compared to the locally refined calculations. The model problem for these
timings was an 8 cm square grid with symmetry boundaries on the top and right side and
grounded conductors on the other sides. At each level, the outermost two cells along the
physical boundary were chosen for refinement. One of these refined grids (corresponding
to four levels refined by a factor of 2) is shown in Fig. 5.7.

Results are shown for refinement ratios of 2 and 4. In each case calculations were per-
formed with a refined grid and a uniform grid with the same peak resolution. The uniform
grid cell size corresponded to the finest cells in the refined grid. Each pair of calculations
was run to the same simulation time and the ratio of CPU times was calculated. Because
of prohibitive runtimes for the higher resolution cases (uniform or locally refined), the fi-
nal time for each pair of calculations was the same but different pairs used different final
times. Our experience has been that the CPU time per iteration does not vary much during
a calculation, so these timings should be representative.

Figure 5.6a shows that speedup is a strong function of refinement ratio. For the model
problem, four refined levels were required to obtain an improvement over the single fine grid
case using a refinement ratio of 2. When a refinement ratio of 4 was used, only two refined
levels were required to obtain a significant speedup. These trends depend on a number
of factors. Chief among these are the time spent performing composite synchronizations
and the fraction of the domain covered by fine cells. For this model problem, the number
of cells at the fine levels was rather large compared to the number at the coarse levels.
This is required if one wants to refine along an entire edge. If, for example, a corner
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FIG. 5.5. Locally refined, uniform fine and uniform coarse grids used to generate results shown in Fig. 5.4.

were recursively refined we would expect an even larger speedup using the locally refined
grid.

The dependence of time spent performing composite synchronizations on the grid hier-
archy is hard to quantify, but is typically about 20–30% of the total simulation time. We
do know that the number of composite solves grows quickly with the number of levels. If
m refined levels are used and each is refined by a factor ofn in time and space, this will
requirenm−1 composite solves per coarse time step. This fact and the speedup results shown
in Fig. 5.6a both show the need for higher refinement ratios.

Decreased runtime is not the only benefit of locally refined grids. Figure 5.6b shows the
relative reduction in memory requirements for the locally refined calculation. The memory
requirements are much less severe for refined grids, provided that the finest levels do not
make up a large fraction of the domain. At some level of refinement, it is no longer feasible
to compare highly refined grids to uniform equivalent grids because the latter cannot fit
within physical memory. This fact limited the number of refined levels we could use in
these comparisons.

The finest of the calculations shown in Fig. 5.6 cannot be run to steady state in a reasonable
amount of time. Even with the speedup shown with local refinement, very high resolution
calculations are still very expensive [9]. Significant savings can be made by gradually
refining the grid as the solution approaches steady state. This approach was used for the
remaining calculations described in this paper.

FIG. 5.6. Ratio of CPU times and memory requirements for uniform and locally refined grid calculations.
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FIG. 5.7. Sample grid used to calculate time and storage savings shown in Fig. 5.6. This grid corresponds to
the case with refinement ratios of 2 and 4 refined levels.

5.3. Sheath-Scale Hydrogen Plasma Simulation

One of the primary motivations for using locally refined grids is to allow for the simulation
of features with disparate length scales. In the next example, we illustrate this by modeling
a hydrogen plasma with sheath-scale resolution in a domain that is a few hundred times
larger. Specifically, we take advantage of symmetry and model an 8 cm region with a 4 cm
long volume and a symmetry boundary condition. In addition to the symmetry boundary in
the x-direction, we enforce symmetry in the transverse direction. This forces the variation
in the solution to one direction, making it a one-dimensional problem. We employ two
refined levels, each with a refinement ratio of 4. Each refined level covers the exterior 1/4
of the next coarser level. This grid structure is shown in Fig. 5.8. With these refinements,
the finest grids are 156µm, which turns out to be approximately the Debye length. At this
resolution, we have a grid spacing that is smaller than the plasma sheath width.

In order to verify that our algorithm properly calculates the plasma behavior in the
sheath, within the limits of our fluid model, we compared the APM results to the results of
the sheath model of Ingold [15]. For the comparison, we took APM calculated values for ion
and electron density, flux, and electric field at a point outside of the sheath region and used
these data as an initial condition for the Ingold model. The model was then integrated to the
bounding wall using the CVODE [6, 7] ordinary differential equation solver. These results

FIG. 5.8. Grid structure for hydrogen sheath calculation.
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FIG. 5.9. Comparison of APM and Ingold sheath model for potential, flux, and densities, respectively.

were then compared with the APM results in the sheath region and are shown in Fig. 5.9. The
agreement is excellent. The small variations may be attributable to the omission of electron
inertia from APM, different treatment of the boundary conditions, or discretization effects.
The assumption of constant electron temperature and constant collisional parameters in the
Ingold model was not found to be an important difference from APM in this experiment.
This was determined by varying the temperatures and collisional parameters in the Ingold
model within the range used in the APM calculation.

5.4. Application to Inductively Coupled Plasma Reactor Simulation

We next consider the application of our method to two problems of interest for ICP
reactor-based plasma processing. Both of these examples demonstrate the importance of
using sufficient resolution, which can be facilitated with local grid refinement. A generic
ICP reactor is depicted in Fig. 5.10. The first simulations examine the effects of different
power deposition profiles on the uniformity of ion flux at a wafer surface. These profiles
correspond to specific RF coil positions and hence address the important engineering issue
of optimal coil placement. The second set of simulations considers RF biasing of the wafer
surface, in which we examine the effect on ion particle and energy flux.
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FIG. 5.10. Sample inductively coupled reactor and the domain on which the simulations occur.

5.4.1. Power Deposition Profile Effects

Along with selectivity and etch rate, spatial etch uniformity is a critical process parameter.
A uniform ion flux will help produce a uniform etch. One of the controls over the ion flux is
the power deposition within the plasma. The input power drives up the electron temperature
and ionization rate. This results in the production of ions which ultimately bombard the
wafer or the chamber walls.

The dimensions and grid structure used in these simulations are shown in Fig. 5.11. In
these simulations, the time-averaged RF power profile is based on the location of driving
coils and an assumed exponential falloff for the time-averaged power within the plasma.
The model does not resolve the inductive fields, nor are the effects of density variation on
the power profile in the plasma considered.

Figure 5.12 shows the relation between the assumed reactor coil positions and the resulting
power deposition profiles. In each case, the coil power was assumed to fall off with a 1 cm
skin depth normalized to 1000 W total power. The resulting ion fluxes at the wafer surface
were compared for these five cases using both a relatively coarse uniform grid and a grid
with local refinement near the wafer surface. The uniformity of the normal ion flux at the

FIG. 5.11. Computational domain for the locally refined calculations used to study power deposition effects.
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FIG. 5.12. Coil positions and power density contours for power deposition study (uniform power density case
is not shown).

wafer surface was measured and is shown for all five cases in Fig. 5.14. The different
cases were compared using the figure of merit

uniformity= max flux−min flux

average flux
. (5.95)

It is interesting to compare the results for two of these cases, labeled 2 and 3. Using only
the coarse grid solutions, case 3 appears to be a far superior coil configuration. Subsequent
refined calculations, however, show that cases 2 and 3 were very similar and that 2 was
in fact superior. This is shown in Fig. 5.13. Although total ion flux is not sensitive to grid
spacing, this simulation suggests that the details of the spatial distribution are.

FIG. 5.13. Coarse, uniform solution for coil placements 2 and 3.
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FIG. 5.14. Wafer flux uniformity error for refined and uniform grids.

5.4.2. Wafer Biasing Effects

One of the key advantages to inductively coupled plasma reactors is the ability to in-
dependently control ion flux and energy. Capacitively coupled plasmas have an electron
production rate dependent on the driving potential. High potential gradients required for
high densities often result in bombarding of the wafer surface by very high energy ions,
which is usually undesirable. In many ICP reactors, the chuck (or platten) holding the
semiconductor wafer has an RF potential bias applied to it. This has the effect of increasing
the average ion energy at the wafer for the same total ion flux. The driving RF coils dump
energy into the plasma, but the resulting fields are not seen by the wafer, which is many skin
depths away. Similarly, the bias field at the wafer does not affect the bulk plasma. Surface
plots of the state variables for one of these calculations are shown in Fig. 5.15.

In order to quantify these effects and determine their dependence on grid resolution,
APM was used to study the effect of RF wafer biasing on the ion flux and energy impinging
on the wafer surface. The geometry and grid structure for these calculations are shown in

FIG. 5.15. Potential, electron density, electron temperature, and ion flux magnitude plots for one of the wafer
bias calculations.
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FIG. 5.16. Computational domain used in the locally refined calculations as part of the wafer bias study.

Fig. 5.16. Three calculations were performed corresponding to 13.56 MHz bias potentials
of 0, 10, and 20 V (peak). Each of these was calculated on a relatively coarse, uniform grid
and a locally refined grid. The refined grid included regions near the domain boundaries,
both those representing the wafer surface and the chamber walls. Figure 5.17 shows the
calculated ion flux and energy, respectively, at the wafer surface.

As expected, the ion flux was insensitive to the bias potential as well as grid resolution
effects. The effect of the bias was less than 2.1% and that of the grid resolution was less than
3.4%. Note how this contrasts with the previously discussed power deposition study. The
ion energy changed significantly at high bias potentials, however. The 20 V bias resulted in

FIG. 5.17. Ion normal flux and energy per particle for uniform and locally refined grids.
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higher ion energies of up to 61.4%. The higher resolution calculations differed significantly
from the corresponding uniform calculations as well. These grid resolution effects accounted
for up to 17.0% variations in the ion energy. This suggests that an accurate computational
study of RF biasing effects requires high spatial accuracy in the wafer region to properly
resolve ion energy profiles.

6. CONCLUSION

We have described a numerical method for the solution of plasma fluid equations on
block-structured, locally refined grids. The accuracy and efficiency of the algorithm for
some representative problems have been demonstrated. We have also presented calculations
that address questions of interest for semiconductor processing.

The algorithm presented in this paper assumes fixed, locally refined grids. However,
nothing in the algorithm precludes adaptive changes to the grid structure. In fact, the code
used to obtain the results presented in Section 5 can adaptively regrid based on user-specified
criteria. The selection of such criteria has been investigated in [32]; however, more study is
warranted. In particular, the use of error estimation for grid selection should be investigated.

In spite of the large computational savings achieved with locally refined grids, high-
resolution steady-state calculations can still be extremely expensive using our time-dependent
algorithm. Consequently, we have investigated some modifications that allow the use of
larger time steps. These include the reduction to first order of the electron density edge
predictions and the use of more aggressive subcycling (ncycle> nref) [32]). A fully implicit
integration of the coupled electron continuity and Poisson equations is also being investi-
gated. The accuracy and efficiency of such alternatives, relative to the algorithm presented
here, remain to be determined, however.

REFERENCES

1. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive projection
method for the variable density incompressible Navier–Stokes equations,J. Comput. Phys. 142, 1 (1998).

2. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics,J. Comput. Phys. 82,
No. 1, 64 (1989).

3. M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations,J. Comput.
Phys. 53, 484 (1984).

4. J. D. Bukowski, D. B. Graves, and P. Vitello, Two-dimensional fluid model of an inductively coupled plasma
with comparison to experimental spatial profiles,J. Appl. Phys. 80 (September 1996).

5. J. D. Bukowski, R. A. Stewart, D. B. Graves, and P. Vitello, Modeling inductively coupled plasma tools with
chlorine chemistry, inProceedings, Electrochemical Society Meeting, May 1994.

6. S. D. Cohen and A. C. Hindmarsh,CVODE User Guide, Technical Report UCRL-MA-118618, Lawrence
Livermore National Laboratory, September 1994.

7. S. D. Cohen and A. C. Hindmarsh, CVODE, a stiff/nonstiff ODE solver in C,Comput. Phys. 10, No. 2, 138
(1996).

8. P. Colella, Multidimensional upwind methods for hyperbolic conservation laws,J. Comput. Phys. 87, 171
(1990).

9. P. Colella, M. R. Dorr, and D. D. Wake, A conservative finite difference method for the numerical solution of
plasma fluid equations,J. Comput. Phys. 149, 168 (1999).

10. W. Y. Crutchfield and M. L. Welcome,Object Oriented Implementation of Adaptive Mesh Refinement
Algorithms, Technical Report UCRL-JC-113502, Lawrence Livermore National Laboratory, Livermore,
CA, April 1993.



SOLUTION OF PLASMA FLUID EQUATIONS 583

11. G. W. Hedstrom, G. H. Rodrigue, M. Berger, and J. Oliger, Adaptive mesh refinement for 1-dimensional gas
dynamics, inIMACS(North-Holland, Amsterdam, 1983), p. 43.

12. R. J. Hoekstra and M. J. Kushner, The effect of subwafer dielectrics on plasma properties in plasma etching
reactors,J. Appl. Phys. 77, No. 8, 3668 (1995).

13. R. J. Hoekstra and M. J. Kushner, Predictions of ion energy distributions and radical fluxes in radio frequency
biased inductively coupled plasma etching reactors,J. Appl. Phys. 79, No. 5, 2275 (1996).

14. L. H. Howell, R. B. Pember, P. Colella, J. P. Jessee, and W. A. Fiveland, A conservative adaptive-mesh
algorithm for unsteady, combined-mode heat transfer using the discrete ordinates method,Numer. Heat Trans-
fer, Part B, in press.

15. J. H. Ingold, Two-fluid theory of the positive column of a gas discharge,Phys. Fluids15, No. 1, 75 (January
1972).

16. A. E. Koniges, G. G. Craddock, D. D. Schnack, and H. R. Strauss (Eds.),Proceedings, the Workshop on
Adaptive Grid Methods for Fusion Plasmas, Lawrence Livermore National Laboratory, Technical Report
CONF-941279, July 1995.

17. M. J. Kushner, W. Z. Collison, M. J. Grapperhaus, J. P. Holland, and M. S. Barnes, A three-dimensional
model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison
to experiments,J. Appl. Phys. 80, No. 3, 1337 (1996).

18. M. A. Lieberman and A. J. Lichtenberg,Principles of Plasma Discharges and Materials Processing(Wiley,
New York, 1994).

19. D. M. Manos and D. L. Flamm,Plasma Etching: An Introduction(Academic Press, San Diego, 1989).

20. D. F. Martin,An Adaptive Cell-Centered Projection Method for the Incompressible Euler Equations, Ph.D.
thesis, University of California at Berkeley, December 1998.

21. S. F. McCormick,MultiLevel Adaptive Methods for Partial Differential Equations, Frontiers in Applied
Mathematics, Vol. 6 (SIAM, Philadelphia, 1989).

22. R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P. Jesse, An
adaptive projection method for the modeling of unsteady, low-mach number combustion, inProceedings, Fall
Meeting of the Western States Section of the Combustion Institute, 1997.

23. I. Peres and M. J. Kushner, Spatial distributions of power and ion densities in rf excited remote plasma reactors,
Plasma Sources Sci. Technol. 5, 499 (1996).

24. T. J. Sommerer and M. J. Kushner, Monte Carlo-fluid model of chlorine atom production in Cl2, HCl, and
CCl4 radio-frequency discharges for plasma etching,J. Vacuum Sci. Technol. B10, No. 5, 2179 (1992).

25. O. Steiner, M. Knolker, and M. Schussler,Solar Surface Magnetism(Kluwer Academic, Dordrecht/Norwell,
MA, 1994), p. 441.

26. R. A. Stewart, P. Vitello, and D. B. Graves, Two-dimensional fluid model of high density inductively coupled
plasma sources,J. Vacuum Sci. Technol. B12 (January 1994).

27. R. A. Stewart, P. Vitello, D. B. Graves, E. F. Jaeger, and L. A. Berry, Plasma uniformity in high-density
inductively coupled plasma tools,Plasma Sources Sci. Technol. 4 (1995).

28. W. Tan, R. J. Hoekstra, and M. J. Kushner, A time dependent propagator method for long mean free path
transport of neutral particles in plasma processing reactors,J. Appl. Phys. 79, No. 7, 3423 (1996).

29. P. L. G. Ventzek, M. Grapperhaus, and M. J. Kushner, Investigation of electron source and ion flux uniformity
in high plasma density inductively coupled etching tools using two-dimensional modeling,J. Vacuum Sci.
Technol. B12, No. 6, 3118 (1994).

30. P. L. G. Ventzek, R. J, Hoekstra, and M. J. Kushner, Two-dimensional modeling of high density inductively
coupled sources for materials processing,J. Vacuum Sci. Technol. B12, No. 1, 461 (1994).

31. P. Wainman, R. A. Stewart, M. A. Lieberman, D. B. Graves, and P. Vitello, Comparison of langmuir probe
characterization and model predictions in a high density ICP source,Bull. Am. Phys. Soc. 39, No. 6 (1994).

32. D. D. Wake,Simulation of Plasma Based Semiconductor Manufacturing Using Block Structured Locally
Refined Grids, Ph.D. thesis, University of California at Davis, 1998.

33. H. Wu, B. W. Yu, M. L. Li, and Y. Yang, Two-dimensional fluid model simulation of bell jar top inductively
coupled plasma,IEEE Trans. Plasma Sci. 25, No. 1, 1 (February 1997).


	1. INTRODUCTION
	2. THE PLASMA MODEL
	TABLE 2.1

	3. SINGLE-LEVEL ALGORITHM
	4. SOLUTION OF THE FLUID EQUATIONS ON LOCALLY REFINED GRIDS
	FIG. 4.1.
	FIG. 4.2.
	FIG. 4.3.

	5. RESULTS
	FIG. 5.4.
	FIG. 5.5.
	FIG. 5.6.
	FIG. 5.7.
	FIG. 5.8.
	FIG. 5.9.
	FIG. 5.10.
	FIG. 5.11.
	FIG. 5.12.
	FIG. 5.13.
	FIG. 5.14.
	FIG. 5.15.
	FIG. 5.16.
	FIG. 5.17.

	6. CONCLUSION
	REFERENCES

